Oxidation of LDL by myeloperoxidase and reactive nitrogen species: reaction pathways and antioxidant protection.
نویسندگان
چکیده
Oxidative modification of low density lipoprotein (LDL) appears to play an important role in atherogenesis. Although the precise mechanisms of LDL oxidation in vivo are unknown, several lines of evidence implicate myeloperoxidase and reactive nitrogen species, in addition to ceruloplasmin and 15-lipoxygenase. Myeloperoxidase generates a number of reactive species, including hypochlorous acid, chloramines, tyrosyl radicals, and nitrogen dioxide. These reactive species oxidize the protein, lipid, and antioxidant components of LDL. Modification of apolipoprotein B results in enhanced uptake of LDL by macrophages with subsequent formation of lipid-laden foam cells. Nitric oxide synthases produce nitric oxide and, under certain conditions, superoxide radicals. Numerous other sources of superoxide radicals have been identified in the arterial wall, including NAD(P)H oxidases and xanthine oxidase. Nitric oxide and superoxide readily combine to form peroxynitrite, a reactive nitrogen species capable of modifying LDL. In this review, we examine the reaction pathways involved in LDL oxidation by myeloperoxidase and reactive nitrogen species and the potential protective effects of the antioxidant vitamins C and E.
منابع مشابه
Antioxidant Effects of Vitamins C and E on the Low-Density Lipoprotein Oxidation Mediated by Myeloperoxidase
Background: Oxidative modification of low-density lipoprotein (LDL) appears to be an early step in the pathogenesis of atherosclerosis. Meanwhile, myeloperoxidase (MPO)-catalyzed reaction is one of the potent pathway for LDL oxidation in vivo. The aim of this study was to evaluate in vitro antioxidant effects of vitamins C and E on LDL oxidation mediated by MPO. Methods: MPO was isolated from f...
متن کاملAntioxidant effects of vitamins C and e on the low-density lipoprotein oxidation mediated by myeloperoxidase.
BACKGROUND Oxidative modification of low-density lipoprotein (LDL) appears to be an early step in the pathogenesis of atherosclerosis. Meanwhile, myeloperoxidase (MPO)-catalyzed reaction is one of the potent pathway for LDL oxidation in vivo. The aim of this study was to evaluate in vitro antioxidant effects of vitamins C and E on LDL oxidation mediated by MPO. METHODS MPO was isolated from f...
متن کاملMyeloperoxidase-generated reactive nitrogen species convert LDL into an atherogenic form in vitro.
Oxidized LDL is implicated in atherosclerosis; however, the pathways that convert LDL into an atherogenic form in vivo are not established. Production of reactive nitrogen species may be one important pathway, since LDL recovered from human atherosclerotic aorta is enriched in nitrotyrosine. We now report that reactive nitrogen species generated by the MPO-H2O2-NO2- system of monocytes convert ...
متن کاملMelatonin; Growth regulator and strong antioxidant in plants
Melatonin (N-acetyl-5-methoxytryptamine) is an indole metabolite derived from tryptophan and synthesized in plant cells in the chloroplasts and mitochondria. Melatonin is present in all plant species, with large variations in its level depending on the plant organ or tissue, it is a molecule endowed with a multitude of functions that make it worthy to be referred to as a plant growth regulator....
متن کاملElectrochemical Oxidation and Molecular Docking Studies of Leaves Extract of Lemon Verbena and Flowers Extract of Echium Amoenum: Green Antidotes for Treatment of Barbiturate Poisoning
Electrochemical oxidation of leaves extract of lemon verbena and the flowers extract of echium amoenum have been studied in the absence and presence of barbituric acid and 1,3 dimethyl barbituric acidin aqueous solutions and biological pH, using cyclic voltammetry method. The results showed that the electrochemically generated compounds in leaves extract of lemon verbena and the flowers extract...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 20 7 شماره
صفحات -
تاریخ انتشار 2000